The following post has been submitted by Stephen Heale
Some time back – I read that type N thermocouples were used in a brick manufacturing business. They have many positive and stable properties with a good output voltage.
This is an excerpt from the information that I submitted to MFMP back in 2012, comparing type K to type N.
Type K thermocouple:-
Sensitivity 41 µV/ °C, Range -200 °C to +1250 °C.
Causes a deviation in output when the material reaches it’s Curie point (magnetic state change), at 350°C.
Prone to a gradual and cumulative drift in thermal EMF on long exposure at elevated temperatures due to a compositional change caused by oxidation, carburization or neutron irradiation that can produce transmutation in nuclear reactor environments. Manganese and aluminium elements from the negative wire migrate to the positive wire resulting in a down-scale drift due to chemical contamination. This effect is cumulative and irreversible.
Experiences short-term cyclic change (hysteresis) in the temperature range 250 to 650 °C.
Produces random perturbation in thermal EMF between 25 and 225 °C due to magnetic transformations.
Type N thermocouple:-
Sensitivity 39 µV/ °C, Range -270 °C to +1300 °C.
The Curie point is below 0 °C.
Resistant to oxidation with enhanced thermoelectric stability relative to other standard base-metal thermocouple alloys.
Type ‘N’ thermocouples are not merely an improvement but should be considered as the optimum – overcoming all the disadvantages of not only type ‘K’ but any nickel based thermocouple.
A paper presented by Barbara Hudson in relation to the use of type K thermocouples in the clay-brick manufacturing business concluded that they should change to type N.
They were concerned with the problem which occurs between 500 °F to 1020 °F (260 °C to 549 °C) due to short-range ordering, where an erroneous EMF is produced. The paper goes on to discuss the problem caused by hysteresis and cumulative drift when cycled at higher temperatures – which is an area we would expect this research to achieve with further work. (this was in 2012 before LENR was capable of delivering temperatures above 600 °C – hence my comment).
Their ultimate solution was to select a type N thermocouple – (developed by Noel Burley at the Defence Science and Technology Organisation in Australia).
Stephen Heale
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
Are Type K Thermocouples Being Used in Error? (Steven Heale)
The following post has been submitted by Stephen Heale
Some time back – I read that type N thermocouples were used in a brick manufacturing business. They have many positive and stable properties with a good output voltage.
This is an excerpt from the information that I submitted to MFMP back in 2012, comparing type K to type N.
Type K thermocouple:-
Sensitivity 41 µV/ °C, Range -200 °C to +1250 °C.
Causes a deviation in output when the material reaches it’s Curie point (magnetic state change), at 350°C.
Prone to a gradual and cumulative drift in thermal EMF on long exposure at elevated temperatures due to a compositional change caused by oxidation, carburization or neutron irradiation that can produce transmutation in nuclear reactor environments. Manganese and aluminium elements from the negative wire migrate to the positive wire resulting in a down-scale drift due to chemical contamination. This effect is cumulative and irreversible.
Experiences short-term cyclic change (hysteresis) in the temperature range 250 to 650 °C.
Produces random perturbation in thermal EMF between 25 and 225 °C due to magnetic transformations.
Type N thermocouple:-
Sensitivity 39 µV/ °C, Range -270 °C to +1300 °C.
The Curie point is below 0 °C.
Resistant to oxidation with enhanced thermoelectric stability relative to other standard base-metal thermocouple alloys.
Type ‘N’ thermocouples are not merely an improvement but should be considered as the optimum – overcoming all the disadvantages of not only type ‘K’ but any nickel based thermocouple.
A paper presented by Barbara Hudson in relation to the use of type K thermocouples in the clay-brick manufacturing business concluded that they should change to type N.
They were concerned with the problem which occurs between 500 °F to 1020 °F (260 °C to 549 °C) due to short-range ordering, where an erroneous EMF is produced. The paper goes on to discuss the problem caused by hysteresis and cumulative drift when cycled at higher temperatures – which is an area we would expect this research to achieve with further work. (this was in 2012 before LENR was capable of delivering temperatures above 600 °C – hence my comment).
Their ultimate solution was to select a type N thermocouple – (developed by Noel Burley at the Defence Science and Technology Organisation in Australia).
Stephen Heale