A Remarkable Account of the Pons Fleischmann ‘Explosion’ (Russ George)

Thanks to Russ George for giving me permission to repost this article from his Atom Ecology site.

The title of the article is “The Fleischmann Singularity” which can be found here I have posted an abridged version here — there is more information and a video of Pons and Fleischmann discussing this experiment in the original article.

Some few years ago (2006) I was sitting in Martin Fleischmann’s parlour in the South of England. He had invited me to come chat with him about my work which at the time was going on under the banner of my company D2Fusion. I spent a long afternoon with Martin talking over the history of cold fusion. One particular story I was keen to hear was of the melting event in the lab in Utah that was shrouded in mystery. Over time I have come to think that mysterious event was the creation of a what must be named a ‘Fleischmann singularity’.

As Martin told me the story he and Stan had been conducting many electrochemical loading experiments with heavy water and palladium. One long running experiment was with a largish cube of palladium, as I recall about a 1 cm cube. It had been sitting for a very long time, months, in the typical electrolysis bath of heavy water into which a bit of lithium had been introduced to help the electrolyte. It was one of those experiments that explorers often have on the ‘back of the bench’ to watch over a long time frame.

As it happened over a weekend where Stan and Martin were not going to be around the lab Stan’s son was tasked with peeking in on the lab to make sure all was in order. When he did so he saw that the cube experiment lay shattered and broken on the lab bench and in the bench was a hole as if something had burned through it from the experiment. Stan’s son telephoned to report the news and Stan and Martin sprang into action to see what might have happened.

When they examined the lab bench and remains of the experiment they noted that indeed something had not only burned it’s way through the bench but had also burned down and out of sight into the concrete floor of the basement lab. The basement lab was in the large chemistry building with a massive concrete foundation at the University of Utah where Professor Pons was the chair of the department.

Much was done to try to get to the bottom of what happened and no explanation could be arrived at save that the palladium had become and sustained being impossibly hot and produced a mini ‘China Syndrome’ event. Mysteriously the palladium was gone.

What happened next?

The conditions of the experiment were seemingly quite benign. A tiny amount of DC current amounting a 1 watt or so was being used to electrolyse the heavy water. Oxygen was being produced and bubbled up at the platinum anode and deuterium, heavy hydrogen, bubbled at the palladium cathode cube. Palladium being a sponge for hydrogen was also soaking up the deuterium and that palladium cathode may have been holding as many atoms of deuterium as there were palladium atoms. This was Fleischmann’s perfect recipe for cold fusion.

Martin noted that the measure of the density (fugacity) of the heavy hydrogen isotope deuterium electrochemically loaded into palladium surely exceeded that of metallic hydrogen. Indeed he mused to me the calculations based on his measurements put the density of that heavy hydrogen as being well beyond metallic and similar to the density of hydrogen inside the center of a star!

[. . .]

Beyond Cold Fusion

I asked Martin whether he had tried to repeat the palladium cube melt down experiment. His reply was a dramatic and emphatic NO, he said he thought it far too dangerous to do so. He figured they got away with it once without dire consequences — a second time they might not be so lucky. Just what it was that destroyed that experiment he noted “was perhaps even beyond than cold fusion.” The energy required to do the damage they observed was simply beyond anything they could imagine. It was surely nuclear if not beyond so. Fleischmann and Pons dutifully informed nuclear authorities and were flummoxed when they were simply dismissed as reporting the impossible. ‘Fools’ is what Martin called them.

Martin and Stan did continue on their much smaller scale experiments with tiny palladium cathodes that were typically about 1 cm long and the diameter of a toothpick. These were producing reliable anomalous heat that was far beyond any conceivable chemical energy source. Eventually they were able to produce boiling cells that would sustain boiling temperatures for weeks on end and even continue long after the electrolyzing current was shut off!

How does a few grams of molten palladium metal burn through a lab bench and deep into the concrete basement floor of a large building?

Surely this is a question that begs for an answer. As the molted palladium was first contained in a beaker of water sitting on a lab bench something had to take place to make it rapidly get very hot. Palladium melts at 1600 degree C. At that temperature molten palladium is brilliantly white hot, as blindingly bright as the brightest search light.

Presumably the suddenly white hot cube of palladium flashed the heavy water in the beaker to stream and shattered the beaker. It then proceeded to burn through the chemistry lab bench-top which are typically made of heat resistant materials. Then it dropped to the concrete floor. All of the time one might presume it was cooling off as it boiled and burned its way through the bench to the floor.

Once on the concrete floor it was in contact with a very large cold mass of concrete that surely was capable of dissipating the heat from the molten metal rapidly. Anyone with experience in welding and working with molten metals knows that should have been the end of the heat as tiny amounts of molten metals even white hot metals, in this case something with a volume of less than a single cube of sugar, spilled onto concrete can never burned deeply into the concrete.

So somehow the heat had not merely appeared moments before while the experiment was running in the beaker it was continuing to be produced and under this circumstance the sustained 1600 degree C puddle of molten palladium would vaporize the concrete as long as energy was available.

No ordinary explanation of some character of palladium and chemistry can accommodate the observations. Not even I would say is even the most likely ‘out of the box cold fusion explanation’ of a mixture or palladium and heavy hydrogen. Something else must have been happening. The reacting mixture of palladium and deuterium may well have transcended ordinary matter and become a large quark mass, not for long, but long enough to burn itself out of existence.

Might such a large mass, even just milligrams being large, of quark matter have come to exist. Would it be as hot as a star and rapidly worm its way out of our space time into quantum space and dimensions.

Other explanations are invited?

Russ George