Lattice Confinement Fusion: NASA Announces, then Un-announces, Discovery of “Potential New Power-Generation Method”

Thanks to Greg Goble for sending the following information.

On May 19, 2020 a post appeared on the NASA Glenn Research Center’s website titled “Lattice Confinement Fusion: NASA Discovers Potential New Power-Generation Method”

The link to this post is:

Clicking on this link just takes you to a message that states “Sorry, but the page you are trying to view does not exist.

However, Google has cached the original post, which can be seen at this link:

Here are some excerpts from this cached page:

Lattice Confinement Fusion

NASA Discovers Potential New Power-Generation Method

A team of NASA researchers seeking a new energy source for deep-space exploration missions, recently discovered a method for triggering room-temperature fusion.

“This discovery could help NASA develop cleaner and safer nuclear power generation methods for future NASA space missions,” said Dr. Theresa Benyo of NASA’s Glenn Research Center. “It also could be used for terrestrial power plants and the production of medical isotopes.”

Benyo and her colleagues published their research in two peer-reviewed papers on April 20 in the journal Physical Review C, Volume 101: “Nuclear fusion reactions in deuterated metals” and “Novel nuclear reactions observed in bremsstrahlung-irradiated deuterated metals.

[. . .]

Called lattice confinement fusion, the method NASA discovered accomplishes fusion reactions with the fuel (deuterium, d) starting at room temperature, while previous fusion research relied on heating the fuel (deuterium/tritium) in a plasma to temperatures 10 times those at the center of the Sun. In the new process, a metal such as erbium is “deuterated” or loaded with deuterons, which packs the fuel approximately a billion times denser than in conventional fusion reactors. Upon irradiation with a 2.9+MeV gamma (energetic X-ray) beam, a deuteron dissociates, and the neutron and proton are ejected. The neutron collides with a deuteron, accelerating it into a neighbor inducing screened d-d fusion, or causing even more energetic screened Oppenheimer-Phillips (O-P) nuclear reactions. A novel feature of the new process is the metal lattice electrons whose negative charges help “screen” the positively charged deuterons and allow them to approach one another more closely overcoming the electrostatic barrier and more easily fusing with one another, according to the theory developed by Dr. Vlad Pines, the project’s theoretical physicist.

Why the post was deleted is not clear. The links to the papers in Physical Review C still work correctly.